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ABSTRACT

Phase retrieval, i.e., the reconstruction of phase information from intensity information, is a central problem in many optical systems.
Imaging the emission from a point source such as a single molecule is one example. Here, we demonstrate that a deep residual neural net is
able to quickly and accurately extract the hidden phase for general point spread functions (PSFs) formed by Zernike-type phase modulations.
Five slices of the 3D PSF at different focal positions within a two micrometer range around the focus are sufficient to retrieve the first six
orders of Zernike coefficients.
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Wavefronts carry two fundamental types of information: (i)
intensity information, i.e., photon flux, and (ii) optical phase informa-
tion. Detectors typically used in optical measurements rely on the
conversion of the incoming fields to electrons. Due to the physics of
the detection process, without interferometry, only the intensity infor-
mation of the incoming wavefront can be recorded, whereas the phase
information is lost. However, it is possible to extract useful phase
details to some extent from the recorded intensity information. This
task has been coined the phase problem, an issue of fundamental
importance not only in optical microscopy but also in many other
areas of physics, e.g., x-ray crystallography, transmission electron
microscopy, and astronomy.1–3

The process of solving or approximating the phase problem is
generally termed phase retrieval (PR), and numerous PR algorithms
have been developed. Typically, they involve iterative optimization for
the phase information under the constraints of the known source and
target intensities as well as the propagating function.4–9 For example, a
set of images of a known point source at various axial positions has
been used to estimate the pupil phase. A recent application of
this approach has used PR for the design of tailored phase masks for
3D super-resolution imaging.10 While these approaches are useful,
they are computationally demanding and, as a result, relatively slow.
Moreover, they require oversampling of the feature space, i.e., a small
increase in extracted phase information requires a large amount of
additional intensity information.11,12

Deep neural nets (NNs) have recently been demonstrated
to be useful tools in optics and specifically in single-molecule
microscopy.13,14 In these approaches, a learning process based on
known image inputs trains the coefficients and weights of the NN,
and the NN then processes unlearned images to extract position
information or other variables. In general, aberrations can arise if
the phase distortions from the microscope are not characterized. It
has been shown that a residual neural net (ResNet)15 is capable of
extracting wavefront distortions from biplane point spread func-
tions (PSFs), which could be efficiently used to correct for aberra-
tions with adaptive optics.16,17 Also, deep learning can be used to
recover images at low-light conditions18 and to accelerate wavefront
sensing.19–21 These findings led us to consider whether an approach
based on a carefully chosen NN architecture might be able to tackle
the fundamental and more general problem of PR of general PSFs,
i.e., those generated from random superpositions of Zernike polyno-
mials. In our design, after learning, the NN performs PR using a
small set of measurements at a range of axial positions and directly
returns the phase information as Zernike coefficients, as schemati-
cally depicted in Fig. 1.

A cornerstone of any approach involving NNs is a sufficiently
large dataset for training of the NN and an independent validation
dataset to assess performance. To provide our NN with training and
validation data, we turned to accurate PSF simulations. Images of
a point emitter were simulated by means of vectorial diffraction
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theory22,23 at focal positions of �1, �0.5, 0, 0.5, and 1lm. The simu-
lated emitter was positioned directly at a glass coverslip, as would be
typical for a phase retrieval experiment. The emitter is placed in index-
matched media in this study, but this choice is not fundamental, and
index mismatch is straightforward to include in the PSF simulation if
so desired.24 Phase information was introduced by multiplying the
Fourier plane fields from the point emitter by a Zernike phase factor
with random Zernike coefficients of order 1–6 (Noll indices 2–28)
with values between �k and k8—these coefficients define the shape of
the final PSF. This choice of number of Zernike polynomials usually
covers the dominant aberrations in an imaging system. Moreover, the
higher-order Zernike coefficients tend toward zero in experimental
settings, but as it was our goal to sample the parameter space equally,
we did not impose any such limitation. The zero-order Zernike coeffi-
cient does not transport phase information, nor modify the detected
image, and was hence not considered. Furthermore, we included cam-
era properties typically encountered with electron multiplying charge-
coupled device detectors (with the exception of excess noise, which
arises from uncertainty in the gain resulting from the electron multi-
plication process), signal and background photons, and Poisson
noise.25 The relevant parameters are summarized in Table S1.
Naturally, the chosen parameters are specific for a typical high NA
experimental situation and can be changed according to the require-
ments of a specific problem.26

Figure 2(a) depicts three representative PSFs at the five simulated
focal positions. The resulting PSFs display complex shapes and rapid
changes in their appearance when the focal position is altered, an
expected behavior given the variations as large as 2k in the Zernike
coefficients up to high-order as visible in Fig. 2(b).

With realistic PSF simulations in hand, the challenge is to define
the NN architecture and training. We focus on two key aspects identi-
fied during our optimizations: (i) training set size. The ability of the
net to extract the Zernike coefficients sharply decreases when the
training set is too small. For example, at a training set size of 200 000
PSFs, training was not successful. We used 2 000 000 training PSFs. (ii)
Choice of architecture. Simple convolutional nets (ConvNets) were
not able to return the Zernike coefficients. Presumably, a ConvNet
with just few layers does not provide enough parameters to learn the
complex phase information. However, a ConvNet deep enough to
exhibit a sufficiently large parameter space likely suffers from the
so-called degradation or vanishing gradient problem.15 In short, one
might naively assume that for more complex problems, a deeper NN
(i.e., a NN featuring more layers) offers the parameter space required.
However, in praxis, one observes a saturation effect, that is, additional
layers do not improve the performance. Frequently, deeper NNs even

perform worse at some point. The reason lies in the backpropagation
of the gradient from the later to earlier layers: during backpropagation,
essentially many multiplications are performed. If the gradient is small
at the beginning, repeated multiplications may yield an almost infi-
nitely small result, which is not helpful in directing the net.

These issues are addressed by a simple ResNet architecture.15

The key features of ResNets are residual blocks that feature skip
connections between earlier and deeper layers, allowing for residual
mapping. The skipped connection provides a deeper layer with the out-
put x of an earlier layer (i.e., an identity mapping of the earlier layer).
The layers in between process the output, yielding F(x). These two out-
puts are added, giving the result H(x) ¼ F(x) þ x. If we consider a sin-
gle residual block, then F(x) adjusts the input x during training to
reduce the residual between prediction and ground truth. Importantly,
if the NN already performs optimally, F(x) will go to 0, which is easy as
the identity mapping of x to a later layer already provided the later layer
with the output from the earlier layer. Without the skipped connection,
i.e., in a normal ConvNet where each layer is only connected to the
layer before, this task is much harder, which explains why ResNet
architectures provide a solution to the vanishing gradient problem.

FIG. 1. Workflow. A stack with a few images of the PSF at different focal positions f
is supplied to a deep residual neural net, which processes the images and directly
returns the Zernike coefficients of order 1–6 (Noll indices 2–28) that correspond to
the phase information encoded in the PSF images.

FIG. 2. (a) Three representative PSFs (A, B, and C) at focal positions from �1 to
1lm. (b) Zernike coefficients for the three representative PSFs shown in (a). For
clarity, only Noll indices that correspond to a change in the order of the Zernike
coefficients are marked along the x-axis. (c) Schematic NN architecture. The PSF
stack is supplied to the NN as a 25 � 25 pixel image with five channels, corre-
sponding to the five focal positions. After 3 � 3 2D convolution with 64 filters, three
residual blocks follow, each consisting of two stacks of batch normalizations, ReLU
activation, and 3 � 3 2D convolution with 64 filters. After each residual block, the
output of the residual block and its respective input are added. Then, 2 � 2 pooling
is performed (MaxPooling, MP, after the first two residual blocks and average pool-
ing, AP, after the third). Finally, two fully connected layers with 512 filters follow,
each with ReLU activation and a dropout layer (dropout rate¼ 0.1). The last layer
returns the predicted Zernike coefficients.
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Our architecture is compact and, as a result, fast (analysis of the
validation set with 100000 PSFs took about eight minutes, i.e., about
5ms per PSF, on a standard desktop PC, equipped with an i7–6700 pro-
cessor and 16 GB RAM, not using a GPU). We note that with conven-
tional PR algorithms, the analysis of 100000 PSFs would take
significantly longer. How long exactly depends on the chosen algorithm,
the code implementation, stopping conditions, and so on, but even a
very optimistic assumption of several seconds per PSF results in process-
ing time of many days to weeks. Our approach is significantly faster,
even if the initial NN training time of approximately 12h is included in
the calculation as a baseline. Moreover, starting conditions prominently
contribute to the performance of conventional PR algorithms, and it was
recently demonstrated that the convergence and speed of conventional
PR algorithms benefit from NN-based parameter initialization.20,27

Therefore, the rapid PR performed by the NN we developed could also
be advantageous to initialize parameters if further optimization is
desired. Finally, such fast analysis lends itself to difficult problems like
calculation of phase aberrations varying throughout the field of view.28,29

The network architecture is diagrammed in Fig. 2(c). The PSFs
are supplied to the NN as five-channel images, corresponding to the
five focal positions. After an initial 2D convolution, three residual
blocks with batch normalization, ReLU activation, and 2D convolution
follow with two maxpooling (MP) steps and one averagepooling step
afterwards, respectively. As the term “residual” indicates, the output x
of a layer n is stored before being passed on to the next layer. Later,
the earlier output x is added to the output y of a deeper layer m. The
joint outputs xþ y are then passed as input to the next layer mþ 1.
Finally, two fully connected layers are implemented before the final
output layer, which returns the 27 Zernike coefficients of order 1–6.
After each of the two fully connected layers, dropout at a rate of 0.1 is
implemented to avoid overfitting.30 For a detailed description of the
relevant concepts, see the supplementary material.

The NN was implemented in Keras with Tensorflow backend
and trained on a standard desktop PC equipped with 64 GB RAM, an
Intel Xeon E5–1650 processor, and an Nvidia GeForce GTX Titan
GPU. The training parameters are summarized in Table S2.
Convergence was reached after training for approximately 12 h and 77
epochs. This training time is reasonable for deep learning
approaches16 and could be strongly reduced if a setup with tailored
hardware is used. Furthermore, it should be noted that retraining is
not necessary unless fundamental parameters of the experiment are
changed, such as the numerical aperture, magnification, or a major
realignment. As discussed above, the trained NN can perform hun-
dreds of phase retrievals per second on a standard PC.

We now assess the performance of the NN on blind validation
images not present in the training set, created as above with random
Zernike coefficients. Figure 3(a) depicts the overall deviation in wave-
length units between the predicted Zernike coefficients and their ground
truth value for the validation dataset (all 27 values for the 100000 PSFs
are pooled). The deviations are symmetric and centered at zero, indicat-
ing that the NN does not exhibit a bias toward over- or underestimating.
Also, the relatively small width of the histogram (standard deviation of
approximately 0.24) indicates reasonably precise predictions.

In agreement with the overall small deviations between prediction
and ground truth, the NN was able to predict the Zernike coefficients
corresponding to single PSFs accurately. This is shown for three repre-
sentative random phase cases in Fig. 3(b) (see Fig. S1 for more details).

The predicted Zernike coefficients are close to the ground truth
values, but they are not perfect. Thus, we wanted to investigate if pre-
diction and ground truth agree on the level of the PSFs as well. For
this, we performed PR on PSFs using the NN and then calculated the
shape of the PSFs with the predicted Zernike coefficients. The results
are depicted in Figs. 3(c) and 3(d). Figure 3(c) shows the histogram of
mean squared errors (MSEs) between input and retrieved PSFs, calcu-
lated pixelwise for each slice of all PSFs (orange). As is clearly visible,
the MSE is low, indicating good agreement between input and
retrieved PSFs at the level of the individual pixels. Notably, a signifi-
cant part of the error is to be attributed to the Poisson noise in the
input PSFs: we calculated the MSE between the input PSFs with
Poisson noise and the same input PSFs, just without Poisson noise,
which would obviously be the perfect result for phase retrieval. The
MSE between these two sets of PSFs is depicted by the gray histogram,
which shows large overlap with the orange histogram, i.e., with
the MSE between retrieved and input PSFs. Figure 3(d) shows the
retrieved PSFs corresponding to the plots in Fig. 3(b). Evidently, the
retrieved PSFs agree very well with the input PSFs. As expected from
the MSE analysis, there are minor differences, but not only the overall
shape but also the intricate details of the complex PSFs are recovered
at a high level of detail without the need to perform additional refine-
ment using conventional PR algorithms.

To explore the utility of our PR approach, we asked whether the
NN is able to perform PR on PSFs already used in praxis. One of the
useful PSFs for extracting the 3D position is the Tetrapod PSF with
the 6lm range (Tetra6).31,32 Here, we generated input PSFs under
no-noise conditions to focus on the performance of the PR alone. The
results are depicted in Fig. 3(e). Clearly, the Tetra6 PSF is well retrieved.
In this context, it should be mentioned that some Zernike coefficients
were accurately predicted to values well outside the training range of
�k to k to retrieve the PSF, underscoring the robustness of the NN.
Also, we note that including noise in training is not ideal when the NN
is used for phase mask design given a desired PSF. In this case, it is
more reasonable to train the NN in noise-free conditions to just con-
centrate the information on the effect of the phase mask: if a phase
mask is to be designed, one provides the desired, ideal PSF without
noise to our NN. Then, the calculation yields the Zernike coefficients
that will return the desired PSF, which can subsequently be used for the
phase mask. The validity of this approach was confirmed by retrieving
the Tetra6 PSF with a NN that was trained on noise-free PSFs, which
yielded an improved result [labeled “no noise” in Fig. 3(e)].
Nevertheless, as the figure shows, the NN that was trained on PSFs
with noise still performs well for the Tetrapod. Thus, our approach also
allows one to design a target PSF and then use the NN to develop a
phase mask yielding this PSF, possibly in combination with other
approaches for phase mask design developed recently.10 For a detailed
analysis of different Zernike coefficient ranges, see Fig. S1.

In conclusion, we have developed a deep residual neural net that
performs fast and accurate phase retrieval on complex PSFs from only
five axial sample images of a point source. We investigated the net
architecture and the training data parameters and verified the capabil-
ity of our approach on realistic simulations of complex PSFs carrying
Zernike-like phase information. We also demonstrated that the NN is
able to perform accurate PR on the experimentally relevant Tetra6
PSF. From this, it will be straightforward to expand this approach to
PR of non-Zernike-like phase information using different basis sets
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and to transfer the residual net concept to more applied tasks such as
phase mask design. Fundamentally, we envision that this approach
will be relevant not only for optics but also for any field where phase
information needs to be extracted from intensity information.

See the supplementary material for PSF simulation and neu-
ral network training parameters, explanation of key concepts for
neural network design, analysis of the neural network perfor-
mance for varying Zernike coefficient ranges, and supplementary
references.
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